Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor‐related pathways
نویسندگان
چکیده
BACKGROUND Background: Bisphenol A (BPA) is an estrogen-like chemical widely contained in daily supplies. There is evidence that environmental exposure to BPA could contribute to the development of hormone-related cancers. As is reported in numerous studies, melatonin, an endogenous hormone secreted by the pineal gland, could markedly inhibit estrogen-induced proliferation of breast cancer (BC) cells. In this study, we intended to reveal the effects of melatonin on BPA-induced proliferation of estrogen receptor-positive BC cells. METHODS Methods: We used methyl thiazolyl tetrazolium, luciferase reporter gene and western blotting assays to testify the effect of melatonin on BPA-mediated proliferation of MCF-7 and T47D cells. RESULTS Methyl thiazolyl tetrazolium and colony formation assays showed that melatonin could significantly abolish BPA-elevated cell proliferation. Meanwhile, BPA-upregulated phosphorylation of ERK and AKT was decreased by melatonin treatment. Mechanistically, we found that BPA was capable of upregulating the protein levels of steroid receptor coactivators (SRC-1, SRC-3), as well as promoting the estrogen response element activity. However, the addition of melatonin could remarkably block the elevation of steroid receptor coactivators expression and estrogen response element activity triggered by BPA. CONCLUSION Conclusions: Therefore, these results demonstrated that melatonin could abrogate BPA-induced proliferation of BC cells. Therapeutically, melatonin could be regarded as a potential medication for BPA-associated BC.
منابع مشابه
Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells
Cancer stem cells (CSCs) pose a challenge in cancer treatment, as these cells can drive tumor growth and are resistant to chemotherapy. Melatonin exerts its oncostatic effects through the estrogen receptor (ER) pathway in cancer cells, however its action in CSCs is unclear. Here, we evaluated the effect of melatonin on the regulation of the transcription factor OCT4 (Octamer Binding 4) by estro...
متن کاملThe Inhibitory Effects of Ascorbic Acid, ?-Tocopherol, and Sodium Selenite on Proliferation of Breast Cancer Cell Lines
The role of antioxidants in prevention and treatment of cancers have been reported by several studies. In our investigation we studied the effects of ascorbic acid, ?-tocopherol, and sodium selenite on proliferation of two breast cancer cell lines: T47D (estrogen-receptor positive) and MDA-MB-231 (estrogen-receptor negative). We also used 17-?-estradiol as positive control for proliferation of ...
متن کاملThe Inhibitory Effects of Ascorbic Acid, ?-Tocopherol, and Sodium Selenite on Proliferation of Breast Cancer Cell Lines
The role of antioxidants in prevention and treatment of cancers have been reported by several studies. In our investigation we studied the effects of ascorbic acid, ?-tocopherol, and sodium selenite on proliferation of two breast cancer cell lines: T47D (estrogen-receptor positive) and MDA-MB-231 (estrogen-receptor negative). We also used 17-?-estradiol as positive control for proliferation of ...
متن کاملMelatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways
Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...
متن کاملMelatonin: an inhibitor of breast cancer.
The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018